Dispersive phase shifts due to atom-surface interactions

S. Lepoutre¹, H. Jelassi¹, V.P.A. Lonij², G. Trénec¹, M. Büchner¹, A.D. Cronin², and J. Vigué¹

Laboratoire Collisions Agrégats Réactivité IRSAMC
 Université de Toulouse-UPS and CNRS UMR 5589 F-31062 Toulouse, France, EU
 Department of Physics, University of Arizona
 1118 E. 4th st. Tucson, AZ 85721 USA
 e-mail: cronin@physics.arizona.edu

Abstract

We used the Toulouse atom interferometer to study how Van der Waals (VdW) interactions between atoms and surfaces cause velocity-dependent phase shifts for atomic de Broglie waves [1]. By introducing a thin nano-grating in one branch of this interferometer, we observed a phase shift (see Figure 1) that depends on velocity to the power -0.49. This dispersion serves to measure both the strength and the position dependence of the atom-surface potential in the range from 5 to 10 nm from the surface, and it can also set new limits on non-Newtonian gravity in the 2 nm range.

Related work is described in references [2, 3]

Keywords: Nanostructures, atom interferometry, van der Waals

References

- [1] S. Lepoutre , H. Jelassi, V.P.A. Lonij, G. Trénec, M. Büchner, A.D. Cronin and J. Vigué, Europhys. Lett. 88 20002 (2009)
- J.D. Perreault and A.D. Cronin, Phys. Rev.
 A. 73 033610 (2006); J.D. Perreault and A.D.
 Cronin, Phys. Rev. Lett. 95 133201 (2005)
- [3] A.D. Cronin, J. Schmiedmayer, D.E. Pritchard, Rev. Mod. Phys 81 1051 (2009); www.atomwave.org

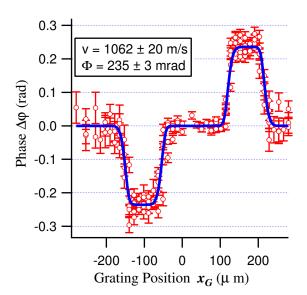


Figure 1: Measured phase shift $\Delta \varphi$ due to transmission through a nano-grating. Phase shift data are shown as a function of the interaction grating position x_G , for a lithium beam velocity $v=1062\pm20$ m/s. At the reference position, $x_G=0$, both interferometer arms go through the gap, so they are unaffected by the grating. When $65 < |x_G| < 190$ μ m only one arm goes through the grating and we observe opposite phase shifts. When $|x_G| > 190 \mu$ m both arms go through the grating, the phase shift returns to 0. The best fit is represented by the continuous line and the parameter Φ .